Copied to
clipboard

G = C22×D40order 320 = 26·5

Direct product of C22 and D40

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C22×D40, C409C23, D204C23, C20.55C24, C23.61D20, (C2×C10)⋊6D8, C101(C2×D8), C51(C22×D8), (C2×C8)⋊33D10, (C22×C8)⋊7D5, C88(C22×D5), C4.45(C2×D20), (C2×C40)⋊44C22, (C22×C40)⋊11C2, (C2×C4).100D20, (C2×C20).391D4, C20.290(C2×D4), C4.52(C23×D5), (C22×D20)⋊11C2, (C2×D20)⋊48C22, C10.22(C22×D4), C2.24(C22×D20), C22.70(C2×D20), (C2×C20).787C23, (C22×C4).443D10, (C22×C10).145D4, (C22×C20).526C22, (C2×C10).178(C2×D4), (C2×C4).736(C22×D5), SmallGroup(320,1412)

Series: Derived Chief Lower central Upper central

C1C20 — C22×D40
C1C5C10C20D20C2×D20C22×D20 — C22×D40
C5C10C20 — C22×D40
C1C23C22×C4C22×C8

Generators and relations for C22×D40
 G = < a,b,c,d | a2=b2=c40=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 1822 in 338 conjugacy classes, 127 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, D4, C23, C23, D5, C10, C10, C2×C8, D8, C22×C4, C2×D4, C24, C20, C20, D10, C2×C10, C22×C8, C2×D8, C22×D4, C40, D20, D20, C2×C20, C22×D5, C22×C10, C22×D8, D40, C2×C40, C2×D20, C2×D20, C22×C20, C23×D5, C2×D40, C22×C40, C22×D20, C22×D40
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, C24, D10, C2×D8, C22×D4, D20, C22×D5, C22×D8, D40, C2×D20, C23×D5, C2×D40, C22×D20, C22×D40

Smallest permutation representation of C22×D40
On 160 points
Generators in S160
(1 86)(2 87)(3 88)(4 89)(5 90)(6 91)(7 92)(8 93)(9 94)(10 95)(11 96)(12 97)(13 98)(14 99)(15 100)(16 101)(17 102)(18 103)(19 104)(20 105)(21 106)(22 107)(23 108)(24 109)(25 110)(26 111)(27 112)(28 113)(29 114)(30 115)(31 116)(32 117)(33 118)(34 119)(35 120)(36 81)(37 82)(38 83)(39 84)(40 85)(41 123)(42 124)(43 125)(44 126)(45 127)(46 128)(47 129)(48 130)(49 131)(50 132)(51 133)(52 134)(53 135)(54 136)(55 137)(56 138)(57 139)(58 140)(59 141)(60 142)(61 143)(62 144)(63 145)(64 146)(65 147)(66 148)(67 149)(68 150)(69 151)(70 152)(71 153)(72 154)(73 155)(74 156)(75 157)(76 158)(77 159)(78 160)(79 121)(80 122)
(1 45)(2 46)(3 47)(4 48)(5 49)(6 50)(7 51)(8 52)(9 53)(10 54)(11 55)(12 56)(13 57)(14 58)(15 59)(16 60)(17 61)(18 62)(19 63)(20 64)(21 65)(22 66)(23 67)(24 68)(25 69)(26 70)(27 71)(28 72)(29 73)(30 74)(31 75)(32 76)(33 77)(34 78)(35 79)(36 80)(37 41)(38 42)(39 43)(40 44)(81 122)(82 123)(83 124)(84 125)(85 126)(86 127)(87 128)(88 129)(89 130)(90 131)(91 132)(92 133)(93 134)(94 135)(95 136)(96 137)(97 138)(98 139)(99 140)(100 141)(101 142)(102 143)(103 144)(104 145)(105 146)(106 147)(107 148)(108 149)(109 150)(110 151)(111 152)(112 153)(113 154)(114 155)(115 156)(116 157)(117 158)(118 159)(119 160)(120 121)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 69)(2 68)(3 67)(4 66)(5 65)(6 64)(7 63)(8 62)(9 61)(10 60)(11 59)(12 58)(13 57)(14 56)(15 55)(16 54)(17 53)(18 52)(19 51)(20 50)(21 49)(22 48)(23 47)(24 46)(25 45)(26 44)(27 43)(28 42)(29 41)(30 80)(31 79)(32 78)(33 77)(34 76)(35 75)(36 74)(37 73)(38 72)(39 71)(40 70)(81 156)(82 155)(83 154)(84 153)(85 152)(86 151)(87 150)(88 149)(89 148)(90 147)(91 146)(92 145)(93 144)(94 143)(95 142)(96 141)(97 140)(98 139)(99 138)(100 137)(101 136)(102 135)(103 134)(104 133)(105 132)(106 131)(107 130)(108 129)(109 128)(110 127)(111 126)(112 125)(113 124)(114 123)(115 122)(116 121)(117 160)(118 159)(119 158)(120 157)

G:=sub<Sym(160)| (1,86)(2,87)(3,88)(4,89)(5,90)(6,91)(7,92)(8,93)(9,94)(10,95)(11,96)(12,97)(13,98)(14,99)(15,100)(16,101)(17,102)(18,103)(19,104)(20,105)(21,106)(22,107)(23,108)(24,109)(25,110)(26,111)(27,112)(28,113)(29,114)(30,115)(31,116)(32,117)(33,118)(34,119)(35,120)(36,81)(37,82)(38,83)(39,84)(40,85)(41,123)(42,124)(43,125)(44,126)(45,127)(46,128)(47,129)(48,130)(49,131)(50,132)(51,133)(52,134)(53,135)(54,136)(55,137)(56,138)(57,139)(58,140)(59,141)(60,142)(61,143)(62,144)(63,145)(64,146)(65,147)(66,148)(67,149)(68,150)(69,151)(70,152)(71,153)(72,154)(73,155)(74,156)(75,157)(76,158)(77,159)(78,160)(79,121)(80,122), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,41)(38,42)(39,43)(40,44)(81,122)(82,123)(83,124)(84,125)(85,126)(86,127)(87,128)(88,129)(89,130)(90,131)(91,132)(92,133)(93,134)(94,135)(95,136)(96,137)(97,138)(98,139)(99,140)(100,141)(101,142)(102,143)(103,144)(104,145)(105,146)(106,147)(107,148)(108,149)(109,150)(110,151)(111,152)(112,153)(113,154)(114,155)(115,156)(116,157)(117,158)(118,159)(119,160)(120,121), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,69)(2,68)(3,67)(4,66)(5,65)(6,64)(7,63)(8,62)(9,61)(10,60)(11,59)(12,58)(13,57)(14,56)(15,55)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,48)(23,47)(24,46)(25,45)(26,44)(27,43)(28,42)(29,41)(30,80)(31,79)(32,78)(33,77)(34,76)(35,75)(36,74)(37,73)(38,72)(39,71)(40,70)(81,156)(82,155)(83,154)(84,153)(85,152)(86,151)(87,150)(88,149)(89,148)(90,147)(91,146)(92,145)(93,144)(94,143)(95,142)(96,141)(97,140)(98,139)(99,138)(100,137)(101,136)(102,135)(103,134)(104,133)(105,132)(106,131)(107,130)(108,129)(109,128)(110,127)(111,126)(112,125)(113,124)(114,123)(115,122)(116,121)(117,160)(118,159)(119,158)(120,157)>;

G:=Group( (1,86)(2,87)(3,88)(4,89)(5,90)(6,91)(7,92)(8,93)(9,94)(10,95)(11,96)(12,97)(13,98)(14,99)(15,100)(16,101)(17,102)(18,103)(19,104)(20,105)(21,106)(22,107)(23,108)(24,109)(25,110)(26,111)(27,112)(28,113)(29,114)(30,115)(31,116)(32,117)(33,118)(34,119)(35,120)(36,81)(37,82)(38,83)(39,84)(40,85)(41,123)(42,124)(43,125)(44,126)(45,127)(46,128)(47,129)(48,130)(49,131)(50,132)(51,133)(52,134)(53,135)(54,136)(55,137)(56,138)(57,139)(58,140)(59,141)(60,142)(61,143)(62,144)(63,145)(64,146)(65,147)(66,148)(67,149)(68,150)(69,151)(70,152)(71,153)(72,154)(73,155)(74,156)(75,157)(76,158)(77,159)(78,160)(79,121)(80,122), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,71)(28,72)(29,73)(30,74)(31,75)(32,76)(33,77)(34,78)(35,79)(36,80)(37,41)(38,42)(39,43)(40,44)(81,122)(82,123)(83,124)(84,125)(85,126)(86,127)(87,128)(88,129)(89,130)(90,131)(91,132)(92,133)(93,134)(94,135)(95,136)(96,137)(97,138)(98,139)(99,140)(100,141)(101,142)(102,143)(103,144)(104,145)(105,146)(106,147)(107,148)(108,149)(109,150)(110,151)(111,152)(112,153)(113,154)(114,155)(115,156)(116,157)(117,158)(118,159)(119,160)(120,121), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,69)(2,68)(3,67)(4,66)(5,65)(6,64)(7,63)(8,62)(9,61)(10,60)(11,59)(12,58)(13,57)(14,56)(15,55)(16,54)(17,53)(18,52)(19,51)(20,50)(21,49)(22,48)(23,47)(24,46)(25,45)(26,44)(27,43)(28,42)(29,41)(30,80)(31,79)(32,78)(33,77)(34,76)(35,75)(36,74)(37,73)(38,72)(39,71)(40,70)(81,156)(82,155)(83,154)(84,153)(85,152)(86,151)(87,150)(88,149)(89,148)(90,147)(91,146)(92,145)(93,144)(94,143)(95,142)(96,141)(97,140)(98,139)(99,138)(100,137)(101,136)(102,135)(103,134)(104,133)(105,132)(106,131)(107,130)(108,129)(109,128)(110,127)(111,126)(112,125)(113,124)(114,123)(115,122)(116,121)(117,160)(118,159)(119,158)(120,157) );

G=PermutationGroup([[(1,86),(2,87),(3,88),(4,89),(5,90),(6,91),(7,92),(8,93),(9,94),(10,95),(11,96),(12,97),(13,98),(14,99),(15,100),(16,101),(17,102),(18,103),(19,104),(20,105),(21,106),(22,107),(23,108),(24,109),(25,110),(26,111),(27,112),(28,113),(29,114),(30,115),(31,116),(32,117),(33,118),(34,119),(35,120),(36,81),(37,82),(38,83),(39,84),(40,85),(41,123),(42,124),(43,125),(44,126),(45,127),(46,128),(47,129),(48,130),(49,131),(50,132),(51,133),(52,134),(53,135),(54,136),(55,137),(56,138),(57,139),(58,140),(59,141),(60,142),(61,143),(62,144),(63,145),(64,146),(65,147),(66,148),(67,149),(68,150),(69,151),(70,152),(71,153),(72,154),(73,155),(74,156),(75,157),(76,158),(77,159),(78,160),(79,121),(80,122)], [(1,45),(2,46),(3,47),(4,48),(5,49),(6,50),(7,51),(8,52),(9,53),(10,54),(11,55),(12,56),(13,57),(14,58),(15,59),(16,60),(17,61),(18,62),(19,63),(20,64),(21,65),(22,66),(23,67),(24,68),(25,69),(26,70),(27,71),(28,72),(29,73),(30,74),(31,75),(32,76),(33,77),(34,78),(35,79),(36,80),(37,41),(38,42),(39,43),(40,44),(81,122),(82,123),(83,124),(84,125),(85,126),(86,127),(87,128),(88,129),(89,130),(90,131),(91,132),(92,133),(93,134),(94,135),(95,136),(96,137),(97,138),(98,139),(99,140),(100,141),(101,142),(102,143),(103,144),(104,145),(105,146),(106,147),(107,148),(108,149),(109,150),(110,151),(111,152),(112,153),(113,154),(114,155),(115,156),(116,157),(117,158),(118,159),(119,160),(120,121)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,69),(2,68),(3,67),(4,66),(5,65),(6,64),(7,63),(8,62),(9,61),(10,60),(11,59),(12,58),(13,57),(14,56),(15,55),(16,54),(17,53),(18,52),(19,51),(20,50),(21,49),(22,48),(23,47),(24,46),(25,45),(26,44),(27,43),(28,42),(29,41),(30,80),(31,79),(32,78),(33,77),(34,76),(35,75),(36,74),(37,73),(38,72),(39,71),(40,70),(81,156),(82,155),(83,154),(84,153),(85,152),(86,151),(87,150),(88,149),(89,148),(90,147),(91,146),(92,145),(93,144),(94,143),(95,142),(96,141),(97,140),(98,139),(99,138),(100,137),(101,136),(102,135),(103,134),(104,133),(105,132),(106,131),(107,130),(108,129),(109,128),(110,127),(111,126),(112,125),(113,124),(114,123),(115,122),(116,121),(117,160),(118,159),(119,158),(120,157)]])

92 conjugacy classes

class 1 2A···2G2H···2O4A4B4C4D5A5B8A···8H10A···10N20A···20P40A···40AF
order12···22···24444558···810···1020···2040···40
size11···120···202222222···22···22···22···2

92 irreducible representations

dim1111222222222
type+++++++++++++
imageC1C2C2C2D4D4D5D8D10D10D20D20D40
kernelC22×D40C2×D40C22×C40C22×D20C2×C20C22×C10C22×C8C2×C10C2×C8C22×C4C2×C4C23C22
# reps11212312812212432

Matrix representation of C22×D40 in GL4(𝔽41) generated by

1000
04000
0010
0001
,
40000
0100
0010
0001
,
40000
0100
00393
001715
,
1000
04000
0071
003434
G:=sub<GL(4,GF(41))| [1,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[40,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[40,0,0,0,0,1,0,0,0,0,39,17,0,0,3,15],[1,0,0,0,0,40,0,0,0,0,7,34,0,0,1,34] >;

C22×D40 in GAP, Magma, Sage, TeX

C_2^2\times D_{40}
% in TeX

G:=Group("C2^2xD40");
// GroupNames label

G:=SmallGroup(320,1412);
// by ID

G=gap.SmallGroup(320,1412);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,675,192,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^40=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽